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What is a BBST? 

• In graph theory, a tree is a connected, undirected graph that does not 
contain any cycles 

• A binary tree is a tree with one “root” node and where each node has 
at most two “child” nodes 

• A binary search tree is a binary tree where each node is assigned 
some value and the property holds that for each node V, all nodes in 
the left subtree of V have a value less than that of V and all nodes in 
the right subtree of V have a value greater than that of V 

• A balanced binary search tree is a binary search tree where all leaf 
nodes are as close as possible to the root 



Why is a binary search tree useful? 

• If you want to query whether a given value is in the tree, you can 
easily find where it would be if it were in the tree 

• If the value A is less than the value of some node V, then you know 
that A must lie in the left subtree of V and vice versa 

• This makes querying whether or not a value is in a dataset 
significantly faster than naively checking every value in the dataset 

• Since one would expect the maximum height of the tree to be logN 
where N is the number of nodes present, BSTs allow for O(logN) 
queries 



Why is a balanced binary search tree useful? 

• Optimal BSTs are efficient because of the property that their height is 
logN 

• However, it is not guaranteed that the height is always logN. If new 
values are inserted into the tree, one would add them as children of 
some leaf nodes 

• This can lead to the height of the tree becoming very large and thus 
reducing the runtime to O(N) 

• A balanced binary search tree introduces extra conditions that must 
be satisfied at all times when adding values to ensure that the height 
stays as small as possible 



Tree rotations 

• In order to restructure the tree, BBSTs use “tree rotations” 

 



Tree Rotations (continued) 

• Tree rotations help to shorten the maximum distance from the root to 
a leaf node 

• Different BBSTs use different heuristics to determine where tree 
rotations should take place 



Types of BBSTs 

• AVL tree 

• Splay tree 

• Red-Black tree 



AVL Tree 

• An AVL Tree maintains the property that the difference between a 
node’s left subtree height and right subtree height is at most 1 

• This means that the AVL tree always has as small of a height as 
possible 

• Since all queries are worst case O(h) where h is the height of the tree, 
AVL trees allow for guaranteed O(logN) queries 



AVL Tree (continued) 

• AVL Insertions: 
o Insert a node like you would for a normal BST 

oWalk from the leaf node to the root 

o Suppose the nodes visited are V1, V2, V3, …, Vk in that order 

o If Vi does not satisfy the AVL property anymore, perform some tree rotations 
with Vi, Vi - 1 and Vi - 2  

o There are 4 cases to consider that affect what tree rotations should be 
performed (left-left, left-right, right-left, right-right) 



AVL Tree (continued some more) 

• Deletion: 
• If you want to remove a node from the tree, perform a standard BST deletion 

• Walk up from where the deleted node was to the root and perform 
rebalancing in the same manner as was done for insertion 



AVL Tree Performance 

• Queries are guaranteed to be O(logN) 

• Insertions are guaranteed to be O(logN) 

• Deletions are guaranteed to be O(logN) 

• There can be quite a large constant overhead as a lot of rotations may 
need to be performed during insertion and deletion 

• An AVL Tree is thus not the ideal choice if there are a lot more 
insertions and deletions than queries 



Splay Tree 

• A splay tree utilises the 80-20 rule 

• 80% of the queries are to 20% of the elements in a set in a lot of 
cases 

• Thus, splay trees aim to keep the most recently queried values close 
to the root 

 



Splay Trees 2: Electric Boogaloo 

• Querying a splay tree is initially identical to querying a normal BST 

• Once the query is completed, tree rotations are performed repeatedly 
until the last node visited is the new root node 

 



Splay Tree review 

• Query is O(logN) (albeit with a fairly large constant) 

• Insertion and deletion are O(logN) too 

• Splay trees are very useful because they are faster than Red-Black 
trees and AVL Trees in most modern situations 

• Splay trees are used in the gcc compiler, the implementation of the 
Unix malloc and for Linux loadable modules 

 



Red-Black Tree 

• Red-Black Tree property: 
• Every node is either red or black 

• The root of the tree is always black 

• If a node is red, it’s children must be black 

• Every path from a node to all of its descendant leaf nodes has the same 
number of black nodes 



Red-Black Tree: The Empire Strikes Back 

• For insertion, Red-Black Trees use tree rotations and recolourings 

• When a node V is added to the tree (standard BST insertion), mark it 
as red 

• If V’s parent and uncle are red, make them both black and make V’s 
grandparent red. Repeat this from V’s grandparent. 

• If V’s parent is red and the uncle is black, there are 4 cases of 
rotations with V, the parent and the grandparent. Each case has a 
specific tree rotation and recolouring that needs to be performed. 
These aren’t too difficult to figure out. 

 



Red-Black Tree review 

• All updates and queries are O(logN) 

• Red-Black Trees utilise fewer tree rotations than other BBSTs, making 
the faster on average for lots of insertions 

• Red-Black Trees should be used when there is a high ratio of 
insertions to queries 



The problem with BBSTs 

• All insertions and queries can be performed in O(logN) with all of the 
trees that have been covered 

• Which tree you want to use depends on the constraints of the 
scenario 

• A problem arises: the people that create test data often create 
pathological test cases that are designed to break commonly used 
data structures 

• Test-case authors can predict how these trees will look, so they know 
what cases test them to their limits 



The Solution 

• How can the test-case authors predict how your tree will look if your 
program doesn’t even know how the tree will look? 

• Random numbers come to the rescue! 





Treap 

• A Treap is the amalgamation of a tree and a heap 

• (By this point in the lecture, you should hopefully know what a tree 
is) 

• A heap is a data structure with the property that all of a node’s 
children have a value less than it (or larger than it for a min-heap) 

• Queries are performed identically to any BST 



You can never have enough Treaps 

• Insertion: 
• Each node that gets inserted is assigned a random priority 

• The node gets inserted in the tree according to the heap property on the 
priorities 

• The value of the node is used to decide whether it should be inserted into the 
left or the right subtree 

• Assuming the priorities assigned are true random numbers, the treap will 
remain reasonably well balanced at all times 



Treap Review 

• All queries and insertions are O(logN) 

• No matter what test data is given, the treap should always be 
balanced allowing for very fast queries 

• It is a good idea to seed your random number generator since your 
submissions should always run identically if the same input data is 
given 



TL;DR 

• Treaps are cool 


